Оганесон: попасть в клеточку

Это круче, чем Нобелевская премия! Впервые за 200 лет химический элемент назван в честь действующего российского учёного
Острова стабильности
«Мы можем за месяц получить один атом 118-го элемента»
Боги и герои
Где нужны трансурановые элементы?
Светлана Соколова-Михайлова    

В 2016 году Международный союз теоретической и прикладной химии (IUPAC) утвердил названия последних четырёх элементов таблица Менделеева: 113-го, 115-го, 117-го и 118-го. Последний назван в честь российского физика, академика Юрия Оганесяна. Учёные попадали «в клеточку» и раньше: Менделеев, Эйнштейн, Бор, Резерфорд, чета Кюри... Но лишь второй раз в истории это произошло при жизни учёного. Прецедент случился в 1997 году, когда такой чести удостоился Гленн Сиборг. Юрию Оганесяну давно прочат Нобелевскую премию. Но, согласитесь, получить собственную клеточку в таблице Менделеева куда круче.

Юрий Оганесян (р. 1933)
Выпускник МИФИ, специалист в области ядерной физики, академик РАН, научный руководитель лаборатории ядерных реакций ОИЯИ. Председатель научного совета РАН по прикладной ядерной физике. Имеет почётные звания в университетах и академиях Японии, Франции, Италии, Германии и ряда других стран. Лау­реат Государственной премии СССР, кавалер орденов Трудового Красного Знамени, Дружбы народов, «За заслуги перед Отечеством» и пр.

В нижних строках таблицы вы легко найдёте уран, его атомный номер 92. Все последующие элементы, начиная с 93-го, — это так называемые трансураны. Некоторые из них появились примерно 10 миллиардов лет назад в результате ядерных реакций внутри звёзд. Следы плутония и нептуния были обнаружены в земной коре. Но большинство трансурановых элементов давно распалось, и теперь можно лишь предсказывать, какими они были, чтобы потом пытаться воссоздать их в лабораторных условиях.

Первыми это сделали в 1940 году американские учёные Гленн Сиборг и Эдвин Макмиллан. Родился плутоний. Позднее группа Сиборга синтезировала америций, кюрий, берклий… К тому времени чуть ли не весь мир включился в гонку за сверхтяжёлыми ядрами.

Научный коллектив, работа которого привела к открытию, направляет своё предложение в IUPAC. Комиссия рассматривает аргументы «за» и «против», исходя из следующих правил: «…вновь открытые элементы могут быть названы: (а) по имени мифологического персонажа или понятия (включая астрономический объект), (б) по названию минерала или аналогичного вещества, (в) по названию населённого пункта или географической области, (г) в соответствии со свойствами элемента или (д) по имени учёного».


«Мне по наивности казалось, что каждый физик по секрету от своих коллег всё же мечтает забраться внутрь атома, чтобы собственными глазами увидеть протоны и нейтроны, собственными руками пощупать их и до конца разгадать тайну их взаимодействия и ещё выяснить, нет ли у альфа-частиц, как у ангелов, маленьких крыльев, когда они вылетают из атома»

Из повести Валерия Аграновского. «Взятие сто четвёртого», 1966 г.


Гленн Сиборг
(1912–1999) Американский химик и физик-ядерщик. Работал в Манхэттенском проекте по созданию атомной бомбы в США. В 1951 году Сиборг и Макмиллан получили Нобелевскую премию «за открытия в области химии трансурановых элементов».

Названия четырём новым элементам присваивали долго, почти год. Дата объявления решения несколько раз отодвигалась. Напряжение нарастало. Наконец 28 ноября 2016 года, по истечении пятимесячного срока для приёма предложений и возражений общественности, комиссия не нашла причин отвергнуть нихоний, московий, теннессин и оганесон и утвердила их.

Кстати, суффикс «-он-» не очень типичен для химических элементов. Для оганесона он выбран потому, что по химическим свойствам новый элемент аналогичен инертным газам — это сходство подчеркивает созвучие с неоном, аргоном, криптоном, ксеноном.

Рождение нового элемента — событие исторического масштаба. На сегодняшний день синтезированы элементы седьмого периода до 118-го включительно, и это не предел. Впереди 119-й, 120-й, 121-й… Изотопы элементов с атомными номерами более 100 зачастую живут не более тысячной доли секунды. И кажется, чем тяжелее ядро, тем короче его жизнь. Это правило действует до 113-го элемента включительно. В 1960-х годах Георгий Флёров предположил, что оно не обязано неукоснительно соблюдаться по мере углубления в таблицу. Но как это доказать? Поиск так называемых островов стабильности более 40 лет был одной из важнейших задач физики. В 2006 году коллектив учёных под руководством Юрия Оганесяна подтвердил их существование. Научный мир вздохнул с облегчением: значит, смысл искать всё более тяжёлые ядра есть.

Георгий Флёров
(1913–1990) Советский физик-ядерщик, один из основателей Объединённого института ядерных исследований и лаборатории ядерных реакций в институте. Открыл спонтанное деление ядер урана, инициировал создание советской атомной бомбы. Один из пионеров поиска трансуранов, участвовал в открытии 103-го, 104-го, 105-го и 106-го элементов.

Острова стабильности


  • [«Кот Шрёдингера»] Юрий Цолакович, что же всё-таки представляют собой эти острова стабильности, о которых много говорят в последнее время?

    [Юрий Оганесян] Вы знаете, что ядра атомов состоят из протонов и нейтронов. Но только строго определённое количество этих «кирпичиков» связаны друг с другом в единое тело, которое представляет ядро атома. Комбинаций, которые «не срабатывают», оказывается больше. Поэтому, в принципе, наш мир находится в море нестабильности. Да, есть ядра, которые остались со времён образования Солнечной системы, они стабильны. Водород, например. Участки с такими ядрами будем называть «континентом». Он постепенно уходит в море нестабильности по мере того, как мы идём к более тяжёлым элементам. Но, оказывается, если далеко уйти от суши, возникает остров стабильности, где рождаются ядра-долгожители. Остров стабильности — это открытие, которое уже сделано, признано, но точное время жизни долгожителей на этом острове пока не предсказывается достаточно хорошо.

  • [КШ] Как были открыты острова стабильности?

    [ЮО] Мы долго их искали. Когда ставится задача, важно, чтобы был однозначный ответ «да» или «нет». Причин нулевого результата на самом деле две: либо ты не дотянулся, либо того, что ищешь, вообще нет. У нас был «ноль» до 2000 года. Мы думали, что, может быть, теоретики и правы, когда рисуют свои красивые картины, но нам до них не дотянуться. В 90-е мы пришли к выводу, что стоит усложнить эксперимент. Это противоречило реалиям того времени: нужна была новая техника, а средств не хватало. Тем не менее к началу ХХI века мы были готовы опробовать новый подход — облучать плутоний кальцием-48.


«Ни сосед по квартире, ни попутчик в поезде, ни дипломат на банкете, ни даже собственная жена в собственном доме не умеют быть достойными собеседниками, когда речь заходит о квантах или о странных свойствах америция. Отсюда и ореол таинственности»

Из повести Валерия Аграновского. «Взятие сто четвёртого», 1966 г.


113 нихоний

Название: «нихон» по-японски означает «страна восходящего Солнца». Этим названием хотели поддержать Японию, которая недавно тоже включилась в трансурановую гонку, присоединившись к компании из России, США и Германии.

  • [КШ] Почему для вас так важен именно этот изотоп?

    [ЮО] Он имеет восемь лишних нейтронов. А мы знали, что остров стабильности там, где избыток нейтронов. Поэтому тяжёлый изотоп плутония-244 облучали кальцием-48. В этой реакции синтезировали изотоп сверхтяжёлого элемента 114 — флеровия-289, который живёт 2,7 секунды. В масштабах ядерных превращений это время считается достаточно длительным и служит доказательством того, что остров стабильности существует. Мы доплыли до него, и по мере продвижения вглубь стабильность только росла.

  • [КШ] Почему, в принципе, была уверенность, что существуют острова стабильности?

    [ЮО] Уверенность появилась, когда стало понятно, что ядро имеет структуру… Давно, ещё в 1928 году, наш великий соотечественник Георгий Гамов (советский и американский физик-теоретик) высказал предположение, что ядерное вещество похоже на каплю жидкости. Когда эту модель начали проверять, выяснилось, что она удивительно хорошо описывает глобальные свойства ядер. Но потом наша лаборатория получила результат, который коренным образом изменил эти представления. Мы выяснили, что в обычном состоянии ядро не ведёт себя подобно капле жидкости, не является аморфным телом, а имеет внутреннюю структуру. Без неё ядро существовало бы всего 10-19 секунды. А наличие структурных свойств ядерной материи приводит к тому, что ядро живёт секунды, часы, а мы надеемся, что может жить сутки, а может быть даже миллионы лет. Эта надежда, быть может, и слишком смелая, но мы надеемся и ищем трансурановые элементы в природе.

  • [КШ] Один из самых волнующих вопросов: есть ли предел разнообразию химических элементов? Или их бесконечно много?

    [ЮО] Капельная модель предсказывала, что их не более ста. С её точки зрения есть предел существования новых элементов. Сегодня их открыто 118. Сколько ещё может быть?.. Надо понять отличительные свойства «островных» ядер, чтобы делать прогноз для более тяжёлых. С точки зрения микроскопической теории, которая учитывает структуру ядра, мир наш не кончается за сотым элементом уходом в море нестабильности. Когда мы говорим о пределе существования атомных ядер, мы должны обязательно это учесть.

  • [КШ] Есть ли достижение, которое вы считаете главным в жизни?

    [ЮО] Я занимаюсь тем, что мне на самом деле интересно. Иногда увлекаюсь очень сильно. Иногда получается что-то, и я радуюсь, что получилось. Это жизнь. Это не эпизод. Я не принадлежу к категории людей, которые мечтали быть научными работниками в детстве, в школе, нет. Но просто у меня как-то хорошо получалось с математикой и физикой, и поэтому я пошёл в тот вуз, где надо было сдавать эти экзамены. Ну, сдал. И вообще, я считаю, что в жизни мы все очень сильно подвержены случайностям. Правда, ведь? Очень многие шаги в жизни мы делаем совершенно случайным образом. А потом, когда ты становишься взрослым, тебе задают вопрос: «Почему ты это сделал?». Ну, сделал и сделал. Это моё обычное занятие наукой.

115 московий

Это не в честь Москвы, а в честь Московской области, в которой находятся город Дубна и собственно Объединённый институт ядерных исследований. Напомним, что 105-й элемент таблицы Менделеева называется дубний.

«Мы можем за месяц получить один атом 118-го элемента»


Сейчас ОИЯИ строит первую в мире фабрику сверхтяжёлых элементов на базе ускорителя ионов DRIBs-III (Dubna Radioactive Ion Beams), самого мощного в своей области энергий. Там будут синтезировать сверхтяжёлые элементы восьмого периода (119, 120, 121) и производить радиоактивные материалы для мишеней. Эксперименты начнутся в конце 2017 — начале 2018 года. Андрей Попеко, из лаборатории ядерных реакций им. Г. Н. Флёрова ОИЯИ, рассказал, зачем всё это нужно.

  • [Кот Шрёдингера] Андрей Георгиевич, как предсказывают свойства новых элементов?

    [Андрей Попеко] Основное свойство, из которого следуют все остальные, — это масса ядра. Предсказать её очень сложно, но, исходя из массы, уже можно предположить, как ядро будет распадаться. Есть разные экспериментальные закономерности. Вы можете изучать ядро и, скажем, пытаться описать его свойства. Зная что-то о массе, можно говорить об энергии частиц, которые будет испускать ядро, делать предсказания о времени его жизни. Это довольно громоздко и не очень точно, но более-менее надёжно. А вот если ядро делится спонтанно, прогнозирование становится делом гораздо более сложным и менее точным.

Андрей Попеко
Заместитель директора лаборатории ядерных реакций им. Г. Н. Флёрова Объединённого института ядерных исследований.

  • [КШ] Что мы можем сказать о свойствах 118-го?

    [АП] Он живёт 0,07 секунды и испускает альфа-частицы с энергией 11,7 МэВ. Это измерено. В дальнейшем можно сравнивать экспериментальные данные с теоретическими и поправлять модель.

  • [КШ] На одной из лекций вы говорили, что таблица, возможно, заканчивается на 174-м элементе. Почему?

    [АП] Предполагается, что дальше электроны просто упадут на ядро.

  • [КШ] То есть?

    [АП] Чем больше заряд ядра, тем сильнее оно притягивает электроны. Ядро — плюс, электроны — минус. В какой-то момент ядро притянет электроны настолько сильно, что они должны упасть на него. Наступит предел элементов.


«Итак, что значит искусственным путём получить новый элемент? Это значит изменить количество протонов в атомном ядре уже известного элемента так, чтобы ядро изменило свой порядковый номер. Если взять, например, ядро плутония (атомный вес — 94), влить в него ядро неона (атомный вес — 10), а потом заставить выпустить четыре нейтрона, то и получится 104-й элемент»

Из повести Валерия Аграновского. «Взятие сто четвёртого», 1966 г.


  • [КШ] Могут ли такие ядра существовать?

    [АП] Полагая, что существует 174-й элемент, мы полагаем, что существует и его ядро. Но так ли это? Уран, 92-й элемент, живёт 4,5 млрд лет, а 118-й — меньше миллисекунды. Собственно, раньше считалось, что таблица заканчивается на элементе, время жизни которого пренебрежимо мало. Потом выяснилось, что не всё так однозначно, если двигаться по таблице. Сначала время жизни элемента падает, потом, у следующего, немножко увеличивается, потом опять падает.

  • [КШ] Когда увеличивается — это и есть остров стабильности?

    [АП] Это указание на то, что он есть. На графиках это хорошо видно.

  • [КШ] Тогда что же такое сам остров стабильности?

    [АП] Некоторая область, в которой находятся ядра изотопов, обладающие более долгим по сравнению с соседями временем жизни.

  • [КШ] Эту область ещё предстоит найти?

    [АП] Пока только самый краешек зацепили.

  • [КШ] Что вы будете искать на фабрике сверхтяжёлых элементов?

    [АП] Эксперименты по синтезу элементов занимают много времени. В среднем полгода непрерывной работы. Мы можем за месяц получить один атом 118-го элемента. Кроме того, мы работаем с высокорадиоактивными материалами, и наши помещения должны отвечать специальным требованиям. Но когда создавалась лаборатория, их ещё не было. Сейчас строится отдельное здание с соблюдением всех требований радиационной безопасности — только для этих экспериментов. Ускоритель сконструирован для синтеза именно трансуранов. Мы будем, во-первых, подробно изучать свойства 117-го и 118-го элементов. Во-вторых, искать новые изотопы. В-третьих, пробовать синтезировать ещё более тяжёлые элементы. Можно получить 119-й и 120-й.

  • [КШ] Планируются эксперименты с новыми материалами для мишеней?

    [АП] Мы уже начали работать с титаном. На кальций потратили в общей сложности 20 лет — получили шесть новых элементов.


«…Физики устроены так, что, когда у них нет эффекта, они не теряют надежд, а когда есть эффект, не теряют головы»

Из повести Валерия Аграновского. «Взятие сто четвёртого», 1966 г.


117 теннессин

На территории штата Теннесси расположены Окриджская национальная лаборатория, Университет Вандербильта и Университет Теннесси, представители которых внесли большой вклад в исследования сверхтяжёлых элементов.

  • [КШ] К сожалению, научных областей, где Россия занимает ведущие позиции, не так много. Как нам удаётся побеждать в борьбе за трансураны?

    [АП] Собственно, здесь лидерами всегда были Соединённые Штаты и Советский Союз. Дело в том, что основным материалом для создания атомного оружия был плутоний — его требовалось как-то получать. Потом задумались: а не использовать ли другие вещества? Из ядерной теории следует, что нужно брать элементы с чётным номером и нечётным атомным весом. Попробовали кюрий-245 — не подошёл. Калифорний-249 тоже. Стали изучать трансурановые элементы. Так получилось, что первыми этим вопросом занялись Советский Союз и Америка. Потом Германия — там в 60-е годы была дискуссия: стоит ли ввязываться в игру, если русские с американцами уже всё сделали? Теоретики убедили, что стоит. В итоге немцы получили шесть элементов: со 107-го по 112-й.

    Кстати, метод, который они выбрали, разрабатывал в 70-е годы Юрий Оганесян. И он, будучи директором нашей лаборатории, отпустил ведущих физиков помогать немцам. Все удивлялись: «Как это?» Но наука есть наука, здесь не должно быть конкуренции. Если есть возможность получить новые знания, надо участвовать.

  • [КШ] В ОИЯИ выбрали другой метод?

    [АП] Да. Оказалось, что тоже удачный. Несколько позже подобные эксперименты стали проводить японцы. И синтезировали 113-й. Мы получили его почти на год раньше как продукт распада 115-го, но не стали спорить. Бог с ними, не жалко. Эта группа японская стажировалась у нас — многих из них мы знаем лично, дружим. И это очень хорошо. В некотором смысле это наши ученики получили 113-й элемент. Они же, кстати, подтвердили наши результаты. Желающих подтверждать чужие результаты немного.

  • [КШ] Для этого нужна определённая честность.

    [АП] Ну да. А как по-другому? В науке, наверное, вот так.


«…Собираясь в Дубну, я понимал, что знаменитые сто пятьдесят ядер нового элемента, полученные группой Флёрова, не возвышаются горой в директорском кабинете наподобие ядрам французской мортиры в Историческом музее. В этом смысле многочисленным гостям Дубны не только нечего дарить, но даже и показывать»

Из повести Валерия Аграновского. «Взятие сто четвёртого», 1966 г.


  • [КШ] Каково это — изучать явление, которое по-настоящему поймут от силы человек пятьсот во всём мире?

    [АП] Мне нравится. Я всю жизнь этим занимаюсь, 48 лет.

  • [КШ] Большинству из нас невероятно сложно понять, чем вы занимаетесь. Синтез трансурановых элементов — не та тема, которую обсуждают за ужином с семьёй.

    [АП] Мы генерируем новые знания, и они не пропадут. Если мы можем изучать химию отдельных атомов, значит, обладаем аналитическими методами высочайшей чувствительности, которые заведомо пригодны для изучения веществ, загрязняющих окружающую среду. Для производства редчайших изотопов в радиомедицине. А кто поймёт физику элементарных частиц? Кто поймёт, что такое бозон Хиггса?

  • [КШ] Да. Похожая история.

    [АП] Правда, людей, понимающих, что такое бозон Хиггса, всё же больше, чем разбирающихся в сверхтяжёлых элементах… Эксперименты на Большом адронном коллайдере дают исключительно важные практические результаты. Именно в Европейском центре ядерных исследований появился интернет.

  • [КШ] Интернет — любимый пример физиков.

    [АП] А сверхпроводимость, электроника, детекторы, новые материалы, методы томографии? Всё это побочные эффекты физики высоких энергий. Новые знания никогда не пропадут.

Боги и герои

В честь кого называли химические элементы

Где нужны трансурановые элементы?

Ядерное оружие и космос

Нептуний используется для получения плутония. Теоретически может служить топливом для ядерных реакторов нового поколения, работающих на быстрых нейтронах.

Плутоний — в производстве ядерного оружия, ядерного топлива, атомной энергии, а также элементов питания в космических аппаратах. Именно плутониевая бомба была взорвана в 1945 году на полигоне Аламогордо в США во время первого в мире испытания ядерного оружия.

Америций — для синтеза других сверхтяжёлых элементов и создания контрольно-измерительных приборов (в частности, для детекторов дыма). Теоретически мог бы стать топливом для ядерных реакторов на межпланетных космических кораблях.

Кюрий — в некоторых областях ядерных технологий. Мог бы иметь и более широкое применение, но уж очень дорог.

Берклий — для получения одного из изотопов калифорния.

Калифорний — в лучевой терапии для лечения опухолей и получения новых элементов: для синтеза 118-го мишень из калифорния-249 бомбардировали кальцием-48.

Эйнштейний — для получения менделевия.

Фермий — для синтеза дальнейших элементов.

Остальные трансураны, начиная с менделевия, пока не нашли применения: жизнь их ядер слишком коротка.

«Летом 1959 года по одной из шоссейных дорог двигалась в Москву странная процессия. Впереди на мотоциклах два капитана милиции, а за ними тяжёлый трейлер, обычно перевозящий танки. На этот раз он тащил груз, укрытый брезентом и весящий не менее сорока тонн. В кабине машины сидел мрачный пятидесятилетний шофёр с неизменной трубкой во рту, которого грузчики называли Павликом и который за всю дорогу только один раз засмеялся. А рядом с ним — молодой человек по имени Юрий Оганесян.

И вот однажды процессия остановилась перед мостом через речку. На знаках было написано, что сооружение выдерживает одиннадцать тонн. Оганесян немедленно слазил под мост, увидел балки, пробитые снарядами ещё во время войны, и понял, что запаса прочности нет: одиннадцать тонн — действительно красная цена мосту. Тогда Павлик мрачно посоветовал выйти всем из кабины, заклинить руль, включить скорость, и будь что будет. Оганесян даже не улыбнулся.

Он вёз в Дубну главную часть нового циклотрона, и с его приездом должно было наступить то счастливое равновесие между мыслью учёных и техническими возможностями, которое предопределяет успех. <…> Он вынул блокнот, сделал кое-какие расчёты и внёс наконец контрпредложение: срочно вызвать неизвестно откуда два вертолёта, пустить их сверху над трейлером, закрепив циклотрон на тросах, а трейлер пустить в это время по мосту для подстраховки и с того берега флажками координировать общее движение — эту последнюю обязанность он добровольно брал на себя».

Из повести Валерия Аграновского. «Взятие сто четвёртого», 1966 г.


Впервые опубликовано: «Кот Шрёдингера» №12 (26) за декабрь 2016 г.

24.04.2021 | news | Просмотры: 990